$\begin{array}{ll}\text { Closing Tues: } & 12.1,12.2,12.3 \\ \text { Closing Thurs: } & 12.4(1), 12.4(2), 12.5(1)\end{array}$ Vector operations so far Scalar multiplication:
$\mathbf{c} \mathbf{v}=$ " $\underline{\text { eector }}$ parallel to \mathbf{v} with length scaled by a factor of c "
Vector Addition:
$\mathbf{a}+\mathbf{b}=$ "if \mathbf{a} and \mathbf{b} are drawn tail to head, then $\mathbf{a}+\mathbf{b}$ is the vector that goes from the tail of a to the head of $\mathbf{b}^{\prime \prime}$ (resultant/combined force)

Entry Task: $\quad \mathbf{a}=\langle 3,1,2\rangle, \mathbf{c}=4$
$\mathbf{b}=-\mathbf{i}+6 \mathbf{j}+5 \mathbf{k}$
Compute

1. ca
2. unit vector in the direction of a.
3. $\mathbf{a}+\boldsymbol{b}$
4. $a \cdot b$

12.3 Dot Products

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$
Then we define the dot product by:

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Note:The dot product gives a number (scalar).

Basic fact list:

- Manipulation facts
(works like regular multiplication):

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}
$$

$$
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}
$$

$$
\mathrm{c}(\mathbf{a} \cdot \mathbf{b})=(\mathbf{c} \mathbf{a}) \cdot \mathbf{b}=\mathbf{a} \cdot(\mathrm{c} \mathbf{b})
$$

$$
(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}+\mathbf{b})=? ? ?
$$

- Helpful fact:

$$
\mathbf{a} \cdot \mathbf{a}=\mathrm{a}_{1}^{2}+a_{2}^{2}+a_{3}^{2}=|\boldsymbol{a}|^{2}
$$

The most important fact:

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos (\theta),
$$

where θ is the smallest angle between \boldsymbol{a} and \boldsymbol{b}. $(0 \leq \theta \leq \pi)$

Proof (not required):
By the Law of Cosines:
$|\mathbf{b}-\mathbf{a}|^{2}=|\boldsymbol{a}|^{2}+|\boldsymbol{b}|^{2}-2|\mathbf{a}||\mathbf{b}| \cos (\theta)$
The left-hand side expands to

$$
\begin{aligned}
|\mathbf{b}-\mathbf{a}|^{2} & =(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{b}-\mathbf{a}) \\
& =\mathbf{b} \cdot \mathbf{b}-2 \mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{a} \\
& =|\mathbf{b}|^{2}-2 \mathbf{a} \cdot \mathbf{b}+|\mathbf{a}|^{2}
\end{aligned}
$$

Subtracting $|\boldsymbol{a}|^{2}+|\boldsymbol{b}|^{2}$ from both sides gives

$$
-2 \mathbf{a} \cdot \mathbf{b}=-2|\mathbf{a}||\mathbf{b}| \cos (\theta) .
$$

Divide by -2 to get the result. (QED)

Most important consequence:

If \mathbf{a} and \mathbf{b} are orthogonal, then

$$
\mathbf{a} \cdot \mathbf{b}=0 .
$$

Also:
If \mathbf{a} and \mathbf{b} are parallel, then

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=|a||b| \\
& \quad \text { or }
\end{aligned}
$$

$$
\mathbf{a} \cdot \mathbf{b}=-|a||\mathrm{b}| .
$$

Projections:

12.4 The Cross Product

We define the cross product, or vector then product, for two 3-dimensional vectors, $\boldsymbol{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\boldsymbol{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, by

$$
\boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=
$$

$$
=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| i-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| j+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \boldsymbol{k}
$$

$$
=\left(a_{2} b_{3}-a_{3} b_{2}\right) \boldsymbol{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \boldsymbol{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \boldsymbol{k}
$$

You do $\boldsymbol{a}=\langle 1,3,-1\rangle, \boldsymbol{b}=\langle 2,1,5\rangle$.
Compute $\boldsymbol{a} \times \boldsymbol{b}$

Most important fact:

The vector $\boldsymbol{v}=\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.

Right-hand rule If the fingers of the right-hand curl from \mathbf{a} to \mathbf{b}, then the thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

The magnitude of $\boldsymbol{a} \times \boldsymbol{b}$:
Through some algebra and using the dot product rule, it can be shown that

$$
|\mathbf{a} \times \mathbf{b}|=|\boldsymbol{a}||\boldsymbol{b}| \sin (\theta)
$$

where θ is the smallest angle between \boldsymbol{a} and \boldsymbol{b}. $(0 \leq \theta \leq \pi)$

